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Abstract

This paper introduces a formalism named DSYNC aimed at the design and ver-
ification of synchronous concurrent systems. The components of this formalism are
a transition system and a first-order linear-time temporal logic. It adopts a syn-
chronous computation model with dynamic write-conflict detection, and it handles
non-termination and compositional proofs. This paper also discusses some of the
_pragmatics in verifying systems with DSYNC, and considers some extensions to the
formalism. DSYNC is based on the Hoare logic and the UNITY formalism.

1 Introduction

The class of formalisms composed of a transition system and a first-order linear-time tem-
poral logic includes the Manna and Pnueli logic [13], TLA [12], UNITY [7, 15], ST [22],
and other formalisms [21]. Due to their expressiveness and flexibility. they have been suc-
cessfully employed in the description and verification of concurrent or reactive systems
in several application fields. However, these formalisms deal with asynchronous systems
mostly. A distinct class of computational systems is that of synchronous systems. It in-
cludes programming languages such as Esterel [2], hardware description languages such as
VHDL [17], and specification formalisms such as evolving algebras [10]. Works on the ver-
ification of such systems either explore restricted techniques such as finite model-checkers,
or depend on idiosyncrasies of a particular notation, or are not mature yet. '

' This paper introduces a formalism named DSYNC aimed at the description and verifi-
cation of synchronous systems using a transition system and a first-order linear-time tem-
poral logic. The proposed synchronous computation model detects write-conflicts dynam-
ically (during system execution). DSYNC also features a representation for transitions as
(possibly non—terminating} imperative commands, a modular and compositional approach
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Figure 1: Asynchronous and synchronous computation models

to proof development, a good catalog of elementary verification techniques. There are
extensions to DSYNC dealing with generic parameters, regular structures, and statically
detected conflicts.

We believe the development of DSYNC is a contribution to the application of first-order
linear-time temporal logics on the verification of reactive systems. The main formalisms in
this class listed above (UNITY, TLA, etc.) do not handle synchronous systems, conflict
detection. and other features of DSYNC, but they are essential to the verification of
VHDL and evolving algebras, for instance. Most works.on formal formal verification
concentrate on finite model-checkers and similar techniques (e.g., [8, 11]). Although they
are quite effective for most tasks, these techniques are not appropriate to the verification
of modular designs, parametric or regular systems. and data-intensive problems. DSYNC'
1s an alternative to them, since it easily handles such conditions.

Work on DSYNC started as a wish to apply the UNITY logic on the verification of
VHDL designs. Eventually, it has became a general formalism to describe and specify
synchronous systems with dynamic conflict detection. It can handle hardware description
languages. synchronous programming languages, and some specification formalisms (e.g..
evolving algebras). In [19]. we describe its application to VHDL. This paper describes
DSYNC as general formalism for the verification of synchronous systems. It is organized
as follows. Section 2 discusses the synchronous computation model and introduces the
DSYNC transition system, and section 3 presents the DSYNC logic. Section 4 studies
some methods to apply this formalism in the specification and verification of synchronous
systems. Section 5 comments on related works, and the last section presents some con-

cluding remarks.

2 Transition System

The components of a transition system are a set of variables and a set of transitions.
They represent the (possibly infinite) set of system states and the permitted state changes.
According to the asynchronous computation model adopted by UNITY, TLA, and most
transitions systems, each computation step non-deterministically selects and runs exactly
one elementary transition. Let ¢, and ¢, be the transitions a :=a + 1 and b:=b+ 1. The
left-half of figure 1 shows a computation of the asynchronous combination ¢,[¢,. Distinctly
from these formalisms, DSYNC follows a synchronous computation model, where each
computation step runs each elementary transition once. The right-half of figure 1 shows a
computation of the synchronous combination ¢,||t,.

Notation f : X — Y indicates f is a partial function mapping elements of X to
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z,var € Var variables prg == (cond|trn)
e,ezp € Exp expressions pry || prg
b,cond € Cond conditions trn = cmd
s,emd € Cmd commands trn || trn
t,trn € Trn transitions cmd = skip
F,G,prg € Prg programs var = ezp
a € Value values cmd ; cmd
w € Write C Var write-sets if cond then cmd
o € State: Var — Value states else cmd
6 € Eval:Exp— Value evaluator while ezp do e¢md
Y € Comp: (State x Write)* computation
[S1] skip}@bacﬂ,da [S2] ri=el{c}> 0o
T o @ {2 5(e)}
cmd cmd ~ cmd
(53] s1lwibo = o1 s3|lwb o — o (54] o(b) =true s |wi>o = o)
' s1;82 |wiUws > o i ifbthen s; else sy |w; > o & o1
8’(b) = true
(5] g(b) =false sy |wyD>o e (6] (s: whilebdos) |wb o = o1
5
ifbthen s; else sy |wy > o o P whilebdos|w D> o - o1
= cmd
b) = fal tlw>o — o
[S7] Al s - [S8] Here o2 " tcomd
whilebdos|0>o — o - tlwpbo =o'
t1|w1|>at—r;’crl t2]u)2|>0t—n/la’2
[SQ] e <1 ﬂwg = 0
tilltz |wiUwe > o = 0 & ((01 § wi) U (02 | w2))
Go(b) = true wo = var(b)
trn
t|wip1 > o; — 0; biAby | t]|t2) >
(510] | wit +1 (511] (b1Aby | t1]lt2) z
(b l t> > (0’0,&10)(0'1,(.«.)1)(0’2,0.)2) 1 e <b1|t1> H <b2|t2> >
Figure 2: DSYNC transition system
elements of Y, and {z; — y1,...,Z, —> yn} represents a finite mapping of z; to y;. When
[ is undefined on z, we write f(z) = L. For f and g with disjoint domains, f U g is
the union function. Operation f | Z produces f with its domain restricted to a set Z of
variables names, and f @ g denotes f updated with g:
_ ) f(z) whenzeZ ) g(z) when g(z)# L
12)e) = { 1 otherwise (fea)(e) = g(z) otherwise
Figure 2 presents the DSYNC transition system. A state ¢ is a mapping of variable
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names to values, and &(e) denotes the value in o of an expression e (or condition, or asser-
tion). A program is a pair (b|t); where the program body ¢ is a synchronous combination of
a finite set of elementary transitions, and the initial condition b is a boolean expression de-
scribing the initial value of variables. When the initial condition is irrelevant, we annotate
program (b|t) as t only. Standard imperative commands represent elementary transitions.
For simplicity, we assume variables and expressions are defined as usual, expressions are
total, and programs are well-typed. We also need some syntactical restriction on initial

- conditions to ensure they are consistent. In this paper, they are restricted to a conjunction
of terms z = k, where k is a constant.

The rules in figure 2 present an operational semantics for the DSYNC transition sys-

tem. The four-argument relations s |w > o ! 5 and t lw> o 2o indicate that the

execution of command s or transition ¢ in a state o produces a state o', assigning go the
variables named in the write-set w. Whrite-sets are sets of variable names recording the
assignments that the program performs. We need to build them along the computation
“because they depend on the initial state. For instance, if z > 0 then y := z else skip does
not write to y always. Rules S1 to S7 define the command semantics as usual [1], except
they also collect the write-sets. S2 produces a singleton write-set, and the remaining rules
only combine these sets. Rule S8 executes elementary transitions. and rule S9 describes
the synchronous combination of transitions with dynamic detection of conflicts.

Two transitions generate a write-conflict when they try to assign to the same variable
at the same time. This is an error condition halting program execution. To account
for write-conflicts, we define the semantics for synchronous combinations as follows. To
execute ¢]|t,. we give a distinct copy of the initial state to each transition, execute them
independently, and then update the initial state with the contribution of each transition.
The contribution of a transition is the set of variables the transition writes while executing.
When there is a write-conflict, the computation does not proceed. Otherwise, it does not
matter the order we apply the contributions (computations are deterministic).

Rule S9 describes the behavior above, where (o; | w;) is the contribution of transition ¢;.
This method is dynamic because the write-sets «; are built along the computation, ensuring
a precise detection of conflicts. In [20], we explore a static conflict detection method, where
we assume a transition ¢ assigns to all variables on the left of the assignments.occurring in ¢.-
This method is simpler than DSYNC, since we build this set of variables without looking
at the actual transition computation. However, it is pessimist, because it may indicate a
write=conflict when no one actually happens. Nevertheless, it is adequate to some classes
of restricted systems.

We chose the svnchronous combinator semantics above for many reasons. It seems
to generalize the semantics of several synchronous formalisms, such as VHDL and evolv-
ing algebras, it restricts the interaction between component transitions, and it represents
the conflict resolution method explicitly as a single and well-defined operation (the state
update operation). As a consequence, it is easier to reason about component transitions
independently, and the synchronous combinator shows up several properties. This combi-
nator is idempotent, commutative, associative, and skip is its neutral element. It is worth
notice-that conflicting transitions generally do not show all this properties.
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The last rules in figure 2 define a binary relation F' > T indicating that program F
generates the computation ¥ = (0g,wp)(01,w1)(02.w3) . .., where each w; names the vari-
ables written during the computation of ;. In essence, what programs add to transitions
is a description of the initial states. According to S10, a computation is a (usually in-
finite) sequence of states and write-sets generated through the repeated execution of the
program body that starts in a state satisfying the initial program condition. To define the
synchronous combination of programs, S11 just unfolds the program combination.

3 Logic

We use the DSYNC logic to verify statements about a DSYNC transition system. It is
derived from the Hoare logic [1] and the UNITY [7. 15] logic. The DSYNC logic employs
modified Hoare triples in the form {p} s|w {q} and {p[} ¢ |w {lq[}. They represent the
statement “if the execution of command s or transition ¢ begins in a state where p holds.
then it does terminate in a state where ¢ holds, and it may write to the variables in w”.
Assertions p and g are formulas from standard predicate logic over state variables.

We employ distinct notations for triples over commands and transitions to emphasize
that the computation of a transition does not include the intermediate states generated
during the computation of commands. We need to add write-sets to triples because the
rules for synchronous combinations depend on them. and they are built dynamically, along
the actual computation. However, a triple may describe several computations with distinct
write-sets. Therefore, the write-set of a triple can be wider then the actual write-set built
along a computation.

Using the semantics presented in the previous section, we may precisely describe the
modified Hoare triples. Let o be any state where 6(p) = true. The triple {p} s |w {q}

holds if there exist some ¢’ and w’ where (s |w' > o i 0’), and 6'(q) = true, and W’ C w.

Furthermore, for all ¢/ and w’ where (s |w' > o o c'), we must get '(q) = true, and
w' C w. Transition triples are similarly defined.

Figure 3 lists the rules comprising the DSYNC logic. It is organized in three layers,
réflecting the transition system organization. The bottom layer comprising rules Al to
A6 is the standard Hoare logic for total correctness of commands [1] extended to deal
with write-sets. Rule A1 allows the enlargement of write-sets, A3 ensures the assigned

-variable is included in the write-set, and the remaining rules only carry these sets forward.
Rules B1 to B3 constitute the middle layer, allowing the verification of statements about
transitions and their combinations. These rules define triples over transitions. B1 is an
adaptation (strengthening and weakening) rule, B2 describes elementary transitions, and
B3 describes the synchronous combinator.

To simplify the modular development of systems. rules for combinations need to be

- compositional. It means {|p[} i¢1||t2 |w {|¢[} must be derived from triples over ¢; and ¢, alone.
However, the synchronous combination ¢;||t; does not preserve all triples over ¢; and t,.

For instarice, let ¢, and ¢, be a := a+ 1 and b := b+ 1. In this case, {la=b[} ¢, |w {azb[}

holds, but {la=b[} ¢,||ts|w {la#b[} does not. Actually. as figure 1 shows, what actually holds
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p=p {P}slo'{q} wCuw ¢=¢q

[A1] e (2] {r} skip |« {7}
{pz} z:=e|w {p} {p} s1352|w {q}
[A5] {pAb}si|w{g} {pA-b}s2|w{q} (A6) {pAbAe=X}s|w {pAe<X}
{p} if bthen s; else s, |w {q} {p} whilebdo s |w {p A b}
By PP Whtle e vcw =g (B2] rtlodst ooy
{pl t 1w {ab {ph tw {ql
{p Bt lwr Jailh {pal} t2 [w: {22l
(B3] {pr A p2l} tillta |wiUwa {lg1 A g2} 10wz =0 A var(n) Nws =0 A var(g) N =0
c1] init ' in F |’ p'=p ' Cw (2] var(b) C w
init pin F|w - init bin (b|t)|w
. "'=y¢q
p=>p p coqin F|J 1
- Sl 09l 1 D
pecogin Flw pcogin (b|t)|w
[C5] invpin Flw = (init p m Fle)n (C6] mvrin Flo p co.q n Pl
(pcopin F|w) (pAr)co (gAr)in F|w.
invrin F|w ;o /e o 7 =q
7] (pArT)co (gAr)in F|w cs p=p pleads ¢ in Flw o Cw
: pcogqin F|w [C8] pleads ¢ in F|w
. pcogin Flw
, lead Fl|w ,
[C9] p leads p in F'| [C10] pleads g in Flw

p1 leads ¢ in F |w,

p2 leads ¢; in F | w;
[Cll] (pl Vp2) leads ((11 VQ2) in F I w1U o [Cl-] <b1|tl> ” <b2|t2> = (bl/\bz |t1Ht2)

Figure 3: DSYNC logic

is {la=b[} t.||ts | w {la=b[}. Therefore, as a general case, the combination t,||t, preserves a
triple {|p} t1 |w1 {lq} over the component transition ¢, if the other component ¢, does not
change any variables occurring in ¢g. Rule B3 describes this case. The proviso in this rule
uses the write-sets of each component transition to ensure the condition above for both

components.
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init pin Flw iff Zo(p) AZo Cw
peogin Flw iff (Vi:Zi(p) = (Zi1(g) A Sipq Cw))
invpin Flw iff (Vi:Z(p)AZ; Cw) :
pleads ¢gin F|lw iff (Vi:E;(p)= (3j:52>1ALE;(g) A (Vk:i<k<j= T Cw)))

Figure 4: Temporal properties

The top layer in the DSYNC logic is a temporal logic dealing with statements about
complete program computations. Formulas in this layer are called properties. They are
built from a temporal connective applied to assertions, they are always attached to pro-
grams, and they cannot be nested. Figure 4 lists the properties and their meaning. The
left column shows a property over a program F writing to variables in w, and the right
column shows a condition on the computations £ = (og,wp)(01,w;)(02,w;) ... generated
by F. A property holds if all computations of F satisfy the corresponding condition. In
the right column, ¥;(p) means that there is a position i in ¥, and assertion p holds in the
corresponding state, i.e., &; # L and 7;(p) = true. Likewise, &£; C w means that position
7 only writes to the variables in w, i.e., w; C w.

Informally, properties may be read as follows: init p in F'|w means “p holds in the first
state, and only the variables in w are initialized”. p co ¢ in F' |« means “if p holds, then
q holds in the next state, assigning to the variables in w only”, inv p in F | w means “p
holds in all states, and only the variables in w are assigned”, and p leads ¢ in F |w means
“if p holds. then ¢ will hold in some future state. meanwhile assigning to the variables in
w only”. v :

It is implicit in the comments above that properties only consider the reachable states
of a program F), i.e., the states generated through a computation of F. Depending on
initial conditions, this set is smaller than the set of all possible states. This difference
affects the statements we may prove. For instance. let ¢, be b := b+ «, and let Fj be
{(a = 2|ty). We cannot prove {leven(d)[} t, | « {leven(d)[}. However, we may prove
even(b) co even(b) in Fy | w because a always holds 2 in the computations of Fj.

Rules C1 to C12 define the temporal connectives. C1, C3, and C8 are adaptation
rules, C2 describes the initial states, C4 is the base case for co properties, and C5 defines
temporal invariants. The substitution rules C6 and C7 allow for the introduction and
elimination of temporal invariants in assertions. These two rules are the device that restricts
properties to the set of reachable states. Rules C8 to C11 define the leads connective,
and C12 describes program combinations.

The DSYNC temporal logic is derived from the UNITY logic. The link between
these logics follows from the fact that a synchronous transition program corresponds to
a UNITY program with a single (non-deterministic) transition. Since we consider these
restricted UNITYY programs only, some UNITY rules become simpler in DSYNC. When
moving to DSYNC, we also review all property definitions to account for non-determinism.
non-terminating transitions, and write-sets. Additionally, DSYNC omits an infinitary
UNITY rule for leads properties, because all DSYNC programs are finite.
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prco g in Flw prco g in Flw
(p1Vp2) co (q1Vgz)in Flw

Api}slw{n} {p2}s|w{s)
{PVp}s|w{aV e}

[D1]

D2]

(D3] DL 4 in Fi |w; ppcogrin Fplwy winuwy=0 A
(p1 A p2) co (1 Age) in Fi||Fy |wiUwy var(gr) Nwy =0 A var(gz) Nwy =0

Figure 5: Additional inference rules

As a design decision, DSYNC omits the skip steps (stuttering steps [12]) in the defini-
tion of co. We believe they are not necessary in a synchronous transition system because
the synchronous combination does not interleave states in a computation. As a conse-
quence, co properties are enough to define progress properties (see rule C10). and we
may drop the concept of transient predicates [15] and existentially quantified triples [7].
However, to preserve the semantics of leads. we add rule C9.

To make the DSYNC logic useful in practice, the basic set of rules of figure 3 must
be extended with several derived rules. Figure 5 shows some of these rules. Derived rules
include adaptation rules for command triples which are lifted to.properties and transition
triples. For instance, rule D1 for command triples originates rule D2 for co properties.
Other derived inference rules are inherited (with little changes) from UNITY. Finally,
some derived rules are specific to synchronous transitions. For instance, D3 describes
the synchronous combination of co properties. This last group of derived rule is essential
because they reflect basic aspects of synchronous transitions.

To prove some derived rules (for instance, D2), we need induction on the proof length.
For transition triples, B2 gives the base case, and B1, B3, and B4 give the induction
steps. For co properties, C4 gives the base case, and C3, C6, and C7 give the induction
steps. In this proof, we expand the inv premise in rules C6 and C7 for its definition C3.
exposing a hidden premise on co. We deal with leads properties in a similar way.

We claim that the DSYNC logic is sound, i.e.. rules in figure 3 only generate true
formulas. To justify this claim, we consider each layer separately, greatly simplifying the
soundness proof. The soundness of the bottom layer comes from the Hoare logic [1]. and
the soundness of the middle and top layers follows from the semantics of the DSYNC
transition system, and from the definitions of triples and properties.

To illustrate the soundness proof for the middle layer, we sketch a proof that rule B3
is sound. Let o be a state where &(p;) = d(p2) = true. Assume the premises and the
proviso of B3 are true. From this assumption, it follows that the component transitions ¢,
and ¢, terminate when their computations start in o, the resulting states satisfy ¢; and gz,
and they only write to w; and ws, for w; Nwy; = 0. Rule B3 is sound if all computations of
t1||t2 starting in o also terminate, the resulting states also satisfy ¢; and ¢,, and they only
write to w; Uw,. We demonstrate this statement next.

Figure 2 defines the semantics of ¢, ||¢; using rule S9. From this rule and the assumptions
above, it follows that ¢; |w!/ D> o i o;, and ;(¢;) = true, and w! C w;. Therefore,
according to S9, the execution of ¢;]|t; beginning in o terminates producing ¢’ given by
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o ® ((01 4 wj) U (o2 wj)), and writing to w; Uwj. Since w; C w;, we already get that the
synchronous combination only writes to w; U w,. It remains to show that ¢; and ¢, holds
in o/. We consider ¢; only as the argument for ¢, is symmetric. =~

‘When two states agree on the value of all variables of an expression, this expression has
the same value in both states. We claim that ¢; holds in ¢’ because it holds in 0;, and o’
and o, agree on the value of all variables of ¢;. Let = be a variable in var(q;). From the
proviso of B3 and from w! C wj, we get that either z € w], or ¢ € w; and = ¢ w). Let ¢
and ¢ be states, let v be a write-set, and let y be a variable. The definitions of @ and |
entail the propositions bellow:

[P1] if y € dom(¢'), then (¢ @ ¢)(y) = ¢'(y):
[P2] if y ¢ dom(y'), then (0 ® ¢')(y) = ¢(y);

trn

[P3] fygrvandt|v> o= ¢, then ¢'(y) = ¢(y).

First, assume z € w}. From P1 and the definition of ¢’, it follows that o'(z) = o:(z).
Alternatively, assume z € w;. In this case, we also have that z ¢ «}. From P2 and the
definition of o', we get that o'(z) = o(z). But P3 and the definition of o, ensure that
o1(z) = o(z) too. So, we also get that o'(r) = o1(x). Since there are no other cases
to consider, we get that ¢’ and o; agree on the value of all variables in var(gq;), and ¢
holds in ¢’. A symmetric argument shows that the resulting state of ¢,||¢, also satisfies gs.
Therefore, rule B3 is sound. Similar arguments show that all rules in figure 3 are sound.

" It is worth observe that the soundness proof of the top layer is independent and simpler
than the soundness proof of UNITY, and avoids some foundation problems on the UNITY
logic [16]. This is a consequence of some differences between DSYNC and UNITY, such
as the synchronous combinator, and the absence of infinitary rules and stuttering steps.
We still have no completeness results for DSYXNC logic, but we are working on this.

The layered organization of this logic is an important design decision because it allows
for a separation of concerns. Results about the bottom layer are inherited from the standard
Hoare logic. In the middle layer, we analyze the synchronous combinator without concerns
on the notation for elementary transitions, or on the temporal logic. The top layer deals
with reachable states and complete program computations. Although this layer is based
‘on the UNITY logic, there are evidences that we could to switch to other similar logic
such as TLA or the Manna and Pnueli logic. Such change does not affect the previous
layers, and the new temporal logic could equally inherit the results from other layers.

4 Pragmatics and Extensions

DSYNC inherits many specification and verification techniques from its base formalisms
(UNITY and the Hoare logic), but we need to develop new techniques to cope with the
specificities of DSYNC. To prove a property or triple, we usually begin at the conclusion
and proceed backwards to thé given premises, using the proof rules to break formulas
into sub-formulas. The overall proof organization reflects the program structure, and the
organization of its computations. As the synchronous combinator is the main control
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structure in DSYNC, the rule for this construction strongly influence the organization of
proofs in this formalism. '

Rule B3 breaks a triple over a synchronous combination into sub-triples over its com-
ponent transitions, but the proviso in these rules impose restrictions on the sub-triples and
their write-sets. To satisfy these restrictions, we usually formulate sub-triples that reflect
the contribution of each transition to the desired result. For instance, let ¢; and ¢, be (if
z > 0 then y := z else skip) and (if 2 < 0 then y := —z else skip). Bellow, we list a

“proof for property £ = X co y = abs(X) in t,||t; | {z}:

(1) z=XAz2>20coy=XAX>0int;|{z} A1-6, B2, and C4
(2) >0 co trueinty|0 A1-6, B2, and C4
(3) e=XAz>0coy=XAX2>0in tt;|{z} | D6 in (1,2).and C3
(4) 2=XAz<0coy=-XAX<O0in t;|t;|{z} similar to (1-3)
5) (z=XAz>20)V(z=XAz<0)

o (y=XAX>0)V(y=-XAX<0)in tyty | {2} D2in (3, 4)
(6) =X coy=abs(X) in t|t2 | {z} C3.in (5)

Upper-case variables stand for rigid variables. These variables are not modified through
assignment. preserving their value between states. We use these variables in properties
to state relations between the initial and final value of program variables. Using these
variables, the properties in lines 1 and 2 describe the effect (contribution) of the elementary
transitions on the final value of variables when = > 0. Next, line 3 describes the synchronous
combination of these transitions, where the dynamically built write-sets ensure there is no
conflict between ¢; and ¢,. As a complement, line 4 deals with z < 0. The desired property
follows front the disjunction of both cases. _

This example illustrates a general proof tactic. Working backwards, we split a property
into sub-properties corresponding to computation paths sharing the same write-sets, and
then slip the sub-properties and their write-sets into the component transitions. However.
as we proceed to more complex systems and specifications, we need more sophisticate proof
techniques. Elsewhere [18], we present a catalog of basic specification and verification
techniques for DSYNC which may be applied in many situations. Like the tactic above,
they depend on the program structure, on the organization of its computations, and on the
kind of property that must be proved. Broadly, these techniques reflect the programmer
knowledge on the system it is designing. and they are easy to select and apply. Therefore
(except for some hard cases), usually it is quite easy to find a proof in DSYNC.

DSYNC deals with open systems, which are systems interacting with an environment
that is not described along the system. The proper operation of an open system usually
depends on some assumptions on the environment. To specify an open system F', we
employ a conditional property (“if-then” rule) where a generic (unspecified) program G
represents the environment. The premises are ordinary properties over G stating environ-
ment assumptions, and the conclusion is an ordinary property over F||G stating the system
interaction. For example, consider a program Save behaving as follows. When req signals
a request, it pushes the value of z into buf, and sets done. When the request is removed,
done is reset. The conditional property bellow is part of the description of Save.
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regANz=X A —~done co regAz=X in.G | req,z,w
reg A =X A buf =B leads buf =cons(X, B) A done in Save||G | done, buf, req, z,w

‘The premise indicates that the environment does not change the value of z and req when
- there is an unattended request, and the conclusion indicates that eventually z will be stored
in buf. done will be set. It means Save works well under the assumption the environment
keeps a request until it is attended. This is a common specification pattern in DSYNC.
Elsewhere [18], we analyze similar specification and verification patterns.
Open systems are fundamental to modular system development. Each component in
a library may be regarded as an open system to be plugged to a complete system latter.
Conditional properties allow for the verification of properties of a component based on
properties of other components. It also allows for the derivation of system properties
from component properties. These tasks do not depend on any knowledge on the actual
components. It means a component may be replaced by other, as long as both present the
same properties. Since any property may be a premise, we may place arbitrary restrictions
on the environment. Other approaches (e.g., model-checkers [8]) impose severe limits qn
environment restrictions, what limits their applicability. »
DSYNC may be extended in several directions. Simple but very useful additions
are generic parameters and regular structures. Generic parameters are unspecified con-
stants. They usually stand for the amount of some system resource (size of a vector,
number of available network connections, and so on). DSYNC represents a generic pa-
rameter as a rigid variable. A regular structure is a set of transitions following a common
syntactical pattern parametrized on an argument /. To represent the regular structure
tollt1]l - - - lltE=2]ltE-1, DSYNC adopts the notation (0 </ < E : t;). Generic parameters
and regular structures allow for very compact system descriptions. For instance, assume V
is a generic parameter. Let a be a vector, and let F;, be the program (0< /<N : a[l] := 0).
This program sets the first /N elements of a to zero. In [20], we study a treatment for generic
parameters and regular structures in a static version of DSYNC. A similar approach may
be adopted for the present version of DSYNC.

5 Related Work

The features of DSYNC discussed along this paper are essential to the verification of
synchronous systems. However, they are not present in other formalisms based on a first-
order liner-time temporal logic. UNITY [7, 15] is a typical formalism based on a transition
system and a temporal logic. It includes a synchronous combinator as a syntactic sugar for
complex transitions, as its logic does not include rules for this combinator. Therefore, this
combinator becomes a syntactic sugar to describe complex transitions. UNITY syntacticly
forbids non-terminating transitions. It also forbids write-conflicts, but does not épecify any
test to prevent them. Other formalisms based on a first-order linear-time temporal logic
(such as the Manna and Pnueli logic [13], TLA [12], and ST [22]) present similar problems.

Besides the transition systems and temporal logics, DSYNC is also related to research
on the semantics and verification of VHDL [5, 9]. Some works [3] on this field amount to
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complex descriptions which are not appropriate to the verification of actual designs, while
other works [4, 6] cover only restricted language subsets. The static version of DSYNC
also addresses a restricted subset of VHDL [19]. However, it handles some features that
most semantics ignore (e.g., generic parameters and regular structures), and it can be easily
extended to a more general (dynamic) setting. It is worth observe that DSYNC includes
a general and clear analysis of the synchronous combinator, while most works mix such
analysis with the study of other aspects of VHDL. This approach may lead to very subtle
errors. : ‘

- We may employ DSYNC in other verification tasks beyond VHDL. Evolving al-
gebras [10] are a specification formalism which adopts a synchronous computation model.
Therefore, we may verify properties of an evolving algebra using the DSYNC logic. Nowa-
days, there is a lot of work on formal verification which employs finite model-checkers,
automata, and similar techniques [14]. Such approaches are fully automated and quite
effective, but they are not appropriate to all situations. For instance, they are not do
not deal with first-order (non-propositional) specifications, and they are not good at the
verification of modular systems. A linear-time temporal logic such as DSYNC is a nice
complement to these techniques, since it easily handles those hard situations. Some works
explore this complementarity nature [4], and we plan to explore this path in some future
developments of DSYNC.

6 Last Remarks

DSYNC is composed of a transition system and an associated linear-time temporal logic.
The DSYNC transition system adopts the synchronous computation model with dynamic
conflict detection and non-termination. and the DSYNC allows the verification of proper-
ties of such transition systems. Proofs in this logic are compositional, meaning properties of
a system may be derived from properties of its components without recourse to the actual
definition of components. The DSYNC logic is organized in layers, and there is a cata-
log of specification and verification techniques for this logic. These features are essential
to the verification of synchronous system, but they are not present in similar formalisms.
DSYNC allows for the application of a first-order linear-time temporal logic to the verifi-
cation of synchronous systems. It may be employed in several application fields, it is quite
general and easy to use, and it is complementary to other more restricted and automated
verification methods. Therefore, we believe DSYNC is a good formalism, and we plan to

continue its development.
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